
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

ComplexCloudSim: Towards Understanding
Complexity in QoS-Aware Cloud Scheduling

Huankai Chen
School of Computing
University of Kent

Canterbury, UK

Frank Z Wang
School of Computing
University of Kent

Canterbury, UK

Abstract—The cloud is generally assumed to be homogeneous
in most of the research efforts related to cloud resource manage-
ment and the performance of cloud resource can be determined
as it is predictable. However, a plethora of complexities are
associated with cloud resources in the real world: dynamicity,
heterogeneity and uncertainty. For heterogeneous cloud resources
experiencing vast dynamic changes in performance, a critical
role is played by the statistical characteristics of execution times,
related to different cloud resources, to facilitate decision making
in management. The cloud’s performance can be considerably
influenced by the differences between the estimated and actual
execution times, which may affect the robustness of resource
management systems.

Limitation exists in the study of cloud resource management
systems’ complexities even though extensive research has been
done on complexity issues in various fields from decision making
in economics to computational biology. This paper concentrates
on managing the research question regarding the complexity’s
role in QoS-aware cloud resource management systems. We
present the ComplexCloudSim. Here, CloudSim, a popular sim-
ulation tool-kit, is extended through modelling of complexity
factors in the cloud, including dynamic changes of run-time
performance, resource heterogeneity, and task execution times’
uncertainty. The effects of complexity on performance within
cloud environments are examined by comparing four widely used
heuristic cloud scheduling algorithms, given that the execution
time information is inaccurate. Furthermore, a damage spreading
analysis, one amongst the available complex system analysis
methods, is applied to the system and simulations are run to
reveal the system’s sensitivity to initial conditions within specific
parameter regions. Finally, how small of a damage can spread
throughout the system within the region is discussed as well as
research is done for the potential ways to avoid such chaotic
behaviours and develop more robust systems.

Keywords—Cloud Scheduling; Damage Spreading; QoS; Com-
plexity; Chaotic Behaviour; Cloud Simulation

I. INTRODUCTION

The widely popular pay-as-you-go service has been en-
abled by Cloud Computing [1], which provides access to a
shared pool of physical/ virtual, dynamically heterogeneous
and scalable computational resources. Computational resources
of any scale can be used in a rented module as per need
through commercial cloud providers such as Microsoft Azure,
Amazon (AWS), Rackspace Open Cloud and Google Compute
Engine, which has been made possible by Infrastructure-as-a-
Service (IaaS) model of Cloud Computing. Since availing these
services on-demand is convenient, over the last years, the use
of Cloud Computing has grown exponentially.

Both industry and academia require tailored cloud appli-
cations (customised) to meet their demands and use cloud
resources efficiently. The main question here is:

”How should map-reduce alike groups of tasks be sched-
uled in the complex cloud environment that is reliable and
efficient while meeting the application requirement for QoS?
[2]”

The Cloud Computing community has been facing a real
challenge with the above question. The reported scientific
advances in both software platform development and Cloud
Computing that enable fast data processing in the cloud is cer-
tainly a good news. Successful deployment of analysis engines
such as Hive, Dremel, MapReduce, Spar and Impala has helped
to run analysis jobs in short time across thousands of cloud
resources [11]. However, adaptively scheduling groups of
tasks based on dynamic changes in resource performance has
been a challenge and remains unsolved. Scheduling is a vital
mechanism for many cloud analysis engines. Unfortunately,
the performance of rented cloud resource is not familiar with
the available cloud scheduling systems, as the characteristic is
subject to change dynamically, making it difficult to quantify
during run-time. Cloud resources are homogeneous and the
performance of resources does not change as assumed by most
of the current scheduling solutions. In real-world heteroge-
neous cloud environment, this results in poor performance.

Scheduling comes under NP-complete problem and its
complexity increases significantly in a heterogeneous cloud
environment [15]. In the simplest form, scheduling, by just
allocating appropriate resources based on availability to the
incoming tasks, can be performed in a blind way. Nevertheless,
advanced and sophisticated schedulers are significantly more
reliable and efficient. Moreover, in general, it is expected
that schedulers would react to the cloud resource’s dynamic
performance, most probably by examining the current CPU
load of resources [10]. Also, to deal with the massive scale of
the cloud, schedulers have to be easily distributed, have low
overhead and lightweight.

First, this paper presents an extension to CloudSim [9],
i.e. ComplexCloudSim, which offers many capabilities to
model the complexity associated with the heterogeneous cloud
environment. Then, four heuristics cloud scheduling algorithms
are compared by running simulation (as presented in Section
III) to demonstrate how resource complexity can make the
scheduling system less robust. Section IV presents a damage
spreading analysis model for the complex cloud to reveal the

www.ijacsa.thesai.org 9 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

cloud’s sensitivity to initial conditions in specific parameter
regions. Thus, such hidden chaotic behaviour present in the
cloud scheduling system as a result of complexity is discussed.
Finally, Section V provides the conclusion for this paper.

II. COMPLEXCLOUDSIM: HETEROGENEITY, DYNAMICITY
AND UNCERTAINTY

The cloud can be used to share different types of resources,
which are typically accessed through applications running in
the cloud. A typical cloud scenario can be an application that
can generate several jobs. This application may already have
sub-tasks that need to be resolved. Each sub-task is sent to a
resource for resolving by the scheduling system. In a simple
scenario, adequate resources needed to execute the sub-tasks
are decided by the user; however, in general, the application
will require schedulers that can efficiently and automatically
find the most appropriate resources for completing a group of
tasks.

One of the most studied research topics in the optimi-
sation community is the scheduling issue related with cloud
computing [3] [4] [5]. However, the problem becomes more
challenging due to several complexity factors such as:

• Heterogeneity : The versatility of the current cloud
infrastructures is limited. A crucial feature that needs
to be taken into consideration in any cloud system
is heterogeneity. Now, a single physical host can
run multiple virtual machines (VMs) simultaneously,
spurred by the development of virtualisation tech-
nology. Nevertheless, virtualisation comes with new
challenges that hamper resource scheduling in clouds.
This is because of multiple VMs present in the system
that share hardware resources (e.g. memory, CPU,
network, I/O, etc.) of a physical machine. In such
a scenario, accurate measurement of the rented VMs
actual performance is difficult. For e.g., in Amazon
EC2, instead of fixed performance measures, compute
units determine the provisioning of resources to virtual
machines. The level of computing power required for
provisioning compute unit varies with different host
machines, which effectuate heterogeneity amongst
VM performance [6]. This suggests that cloud is never
homogeneous but always heterogeneous in the real
world.

• Dynamicity : Another important complexity factor
inherent to cloud computing is dynamic changes in
resource performance at runtime [7]. In the real world
scenario, over- or under-provisioning of resource,
hardware/software failures, application misbehaviours
and resource CPU overload can lead to such dynam-
icity of resource performance. The amount of running
jobs assigned may also affect the cloud resource and
may exhibit local activity. This leads to the creation of
complexity. Moreover, the complexity level related to
resource dynamicity increased with sharing of com-
mon underlying hardware infrastructures with other
VMs.

• Uncertainty : The availability of complete informa-
tion about the state of cloud resources is assumed
by most of the research efforts related to scheduling.

However, in cloud computing, during provisioning,
uncertainty can exist between the ready time and the
computing capacity of a resource [8]. We argue that
the main issues with cloud computing is such uncer-
tainties that bring additional challenges in execution
time prediction of tasks, which is vital for many
scheduling algorithms. There can be drastic changes in
resource states in cloud environments. In most cases,
obtaining exact knowledge about a resource is almost
impossible. Accurate estimation of runtime tasks, per-
forming prediction correction, undertaking prediction
fall-back, improving prediction by historical data, etc.
are difficult to execute. Significant uncertainty may
rise due to imprecise execution of prediction times in
scheduling performance.

A. CloudSim

For Cloud Computing infrastructures, CloudSim is a pop-
ular framework to execute simulation of resource scheduling.
Mentioning the main entities/concepts regarding CloudSim, in
terms of terminology, is vital to introducing it:

• Datacenter includes a set of physical hosts that can
either be heterogeneous or homogeneous based on
hardware configurations (memory, CPUs, storage and
bandwidth) and it acts as Cloud Provider. It facilitates
resource provision to cloud users.

• Host, a physical machine, is defined through the
amount of memory present, the list of CPUs (and
their types), storage as well as allocated bandwidth.
A host allows managing VMs based on a specified
VM allocation policy.

• A Cloud Host component manages and hosts the
Virtual Machine (VM).

• Cloudlet is a job assigned by the Cloud User to run on
the cloud. A job can be defined by its resource require-
ment (the number of cores and the amount of memory
needed for performing the job), length (millions of
instructions), dependencies and type (MapReduce jobs
include Map tasks and reduce tasks).

• A Broker is the mediator that negotiates between
cloud providers and cloud users. it acts on behalf of
the cloud user to identify suitable resources that can be
obtained from the cloud provider. Broker undertakes
online negotiations that are directed towards allocation
of resources to meet QoS needs of the user application.
Cloudlets are then sent by the broker for scheduling
available resources under defined scheduling policies.

• CloudletScheduler allows determining the processing
power shared amongst Cloudlets based on available
resources. Different scheduling policies can be used
for implementation of this scheduler.

The hosts and VMs computational capabilities are mea-
sured in terms of million instructions per second per core
(MIPS) in CloudSim and most of its extensions [12] [14]
[13]. Throughout the CloudSim simulation, this measurement
plays a crucial role. Provisioned virtual machines are assumed
to be stable and predictable, in terms of their performance,

www.ijacsa.thesai.org 10 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

Fig. 1. CloudSim : Simulation Flow Chart

by CloudSim. Guaranteed performance is delivered by VMs,
characterised as a fixed amount of MIPS. During a simulation,
such a performance does not change, as presented in Figure
1. However, these assumptions do not hold when an actual
cloud environment such as Amazon EC2 is used. Even though
a certain core speed for each provisioned VM is guaranteed by
most cloud providers, the runtime CPU utilisation of the host
and the underlying physical hardware is assigned to determine
the actual performance of a given VM. Thus, CloudSim may
fail to efficiently simulate the cloud environment’s complexity
due to such incorrect assumptions.

B. ComplexCloudSim

This section explains how cloud simulations can be affected
by complexity. This was derived based on a motivational
example and a study employing four popular cloud scheduling
algorithms. Then, the proposed ComplexCloudSim is pre-
sented by including cloud complexity in the original CloudSim.

1) Cloud Scheduling Algorithms: In general, in a cloud
scheduler, we integrate a scheduling algorithm that runs on a
permanent basis as follows: checking for available resources,
receiving new incoming jobs, selecting appropriate resources
based on performance (Estimated time to be completed) cri-
teria and feasibility (jobs requirements to resources) as well
as generating job plans (to make decision about job priorities
and ordering) with selected resources.

Usually, Table I shows a list of terminologies used in
relation to scheduling in clouds. For performance evaluation,
this paper employs four popularly used heuristic scheduling
algorithms related to simulations of cloud-based complexity.
The followings are the definitions of these four heuristics.

• FCFS: Based on the sequence of submissions, tasks
are executed. The task arriving first is prioritised for
scheduling based on the available resource, just after
submission, following which it is removed from the
queue.

TABLE I. TERMINOLOGY FOR SCHEDULING IN CLOUD COMPUTING

Name Description

QoS Quality of the service

MIPS Million instructions per second (CPU processing speed)

Lt Length of task measured in million of instructions

ETC Estimated time to compute

ERT Estimated ready time of resource

MCT Minimum completion time matrix

Me Estimated makespan

Ma Actual makespan

• Round Robin: The first task is scheduled on the
first resource, and then the second task on the second
resource. This goes on through a cycling process for
all the available resources.

• MinMin : Based on their length (of execution), all
tasks in a job are first ordered. Scheduling is first
done for the task having the shortest length for which
the completion time will be minimum based on the
available resource. Then, it is removed from the queue.

• MaxMin : Base on their length (of execution time), all
tasks in a job are first ordered. Scheduling is done first
for the task with the minimum length for which the
completion time is maximum based on the available
resource. Then, it is removed from the queue.

2) Motivational Example: This section shows how the
robustness of a scheduler is affected by the complexity of
resources. Let us consider a case in a homogeneous cloud with
three VMs where ten independent jobs have to be scheduled
(specifications are presented in Tables II and III). To make the
complexity of scheduling simple, let us assume the jobs length
is fixed and known and also consider that the clouds other
performance related features will have no impact on the jobs
actual completion timesuch as network bandwidth, memory
consumption and disk I/O.

www.ijacsa.thesai.org 11 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

TABLE II. JOBS SPECIFICATIONS

Job Number Number of Tasks Task Length (MIs)

1 3 100

2 2 80

3 8 70

4 4 100

5 3 80

6 3 20

7 2 50

8 6 60

9 2 90

10 4 150

TABLE III. VMS SPECIFICATIONS

VMs Core# MIPSrequest MIPSprovision

VM1 (4 Cores) 1 10 9

2 10 9

3 10 9

4 10 9

VM2 (4 Cores) 5 10 10

6 10 10

7 10 10

8 10 10

VM3 (4 Cores) 9 10 11

10 10 11

11 10 11

12 10 11

Total 3 VMs 12 Cores 120 120

In this example, the Min-Min heuristic is employed to
schedule all of these independent jobs. Since this algorithm
is efficient and simple, a better schedule (which minimises the
jobs’ total completion time) is produced when compared with
other algorithms in the literature. Also, Algorithm 1 presents
the Min-Min algorithm’s pseudo code.

Algorithm 1 MinMin Scheduling algorithm
1: Require: A set of jobs with n tasks, m different cores,
MCT matrix

2: procedure MINMIN SCHEDULING ALGORITHM
3: A list of jobs Lj in queue
4: A list of available cores Lc
5: while List Lj is no empty do
6: For each job in the list Lj
7: if The number of avaliable cores meets the job’s

requirement then
8: find the core that gives the minimum ETC
9: Update MCT matrix

10: From the MCT matrix, find the job with the minimum
ETC

11: Remove the job from the job list Lj
12: Schedule the job’s tasks to the match cores
13: Update the available cores list Lc

As we can see from the difference between the estimated
scheduling plan in Figure 2 and the actual scheduling plan
in Figure 3, the complexity of resources have a great impact
on the job’s QoS. In this simple example, the complexity
factor of resources is shown to degrade the robustness of
scheduling algorithms, i.e. the average job makespan and the

Fig. 2. Motivational Example : Estimated Scheduling Plan

Fig. 3. Motivational Example : Actual Scheduling Plan

total workload runtime in this example, as shown on Table IV.
Therefore, in the following section II-B1, we will investigate
how different degrees of complexity impact such robustness
and how different scheduling heuristics perform under the
complex cloud environment.

TABLE IV. JOBS COMPLETION DETAILS

Job Number Me Ma Makespan Degradation

1 23s 24.89s 1.89s

2 10s 11.11s 1.11s

3 13s 13.78s 0.78s

4 23s 23.78s 0.78s

5 19s 21.11s 2.11s

6 2s 2.22s 0.22s

7 5s 5.56s 0.56s

8 6s 6s 0s

9 11s 12.22s 1.22s

10 34s 37.78s 3.78s (11%)

3) The Implementation for Introducing Complexity: As we
have discussed at the beginning of this section, the perfor-
mance of cloud scheduling is subject to different complexity
factors relating to cloud resources: heterogeneity, dynamicity
and uncertainty. In the remainder of this section, we will
describe, in detail, how ComplexCloudSim attempts to capture
these complexity factors.

a) Heterogeneity Ratio for VMs Provision: In a similar
way to the situation with a real-world Cloud Provider, the
performance of the provisioning VMs is not guaranteed in
ComplexCloudSim. Hence, VMs of equal configuration are
likely to have different core performances characterised by
the random degradation of request MIPS during provision -

www.ijacsa.thesai.org 12 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

unlike the guaranteed fixed MIPS provision of CloudSim. In
ComplexCloudSim, we allocate MIPS to the VMs when they
are created, according to the Heterogeneity Ratio, as we can
see from Algorithm 2.

Algorithm 2 Heterogeneity Ratio for VMs Provision
1: Require: VMs MIPS configuration, MIPSrequest
2: Require: Heterogeneity Ratio, 0 ≤ Ratioheterogeneity ≤

1
3: procedure VMCREATE(MIPSrequest,Ratioheterogeneity)
4: if Ratioheterogeneity > 0 then
5: MIPSprovision =MIPSrequest∗(1−Random ∈

[−Ratioheterogeneity, Ratioheterogeneity])
6: else MIPSprovision =MIPSrequest
7: VMProvision(MIPSprovision)

b) Dynamicity Ratio for Changes of VM performance
at Runtime: The idea that there are dynamic changes to per-
formance at runtime, due to the sharing of common resources
with other VMs and users, is also an important concept relating
to the complexity inherent to Cloud scheduling. In CloudSim,
the VM performance is kept to a fixed number of MIPS
during simulation. In ComplexCloudSim, we periodically, ev-
ery second, change the VM’s runtime MIPS according to its
Dynamicity Ratio and the host’s current CPU utilization, as
shown in Algorithm 3

Algorithm 3 Dynamicity Ratio for Changes of VM perfor-
mance at Runtime

1: Require: Host’s CPU Utilization, Uhost
2: Require: Dynamicity Ratio, 0 ≤ Ratiodynamicity ≤ 1
3: procedure UPDATEMIPS(Uhost,Ratiodynamicity) EV-

ERY SECOND
4: if Ratiodynamicity > 0 then
5: MIPSruntime = MIPSprovision ∗ (1 − Uhost) ∗

(1−Random ∈ [−Ratiodynamicity, Ratiodynamicity])
6: else MIPSruntime =MIPSprovision

c) Uncertainty Ratio for VM Performance Estima-
tion with Inaccurate Information in Scheduling: Accurate
resource performance prediction is hard or even impossible
to achieve in actual complex cloud environments. CloudSim
assumes that full information can be obtained and that such
information is always correct for the purposes of performance
prediction; this is not feasible in real world scenarios. Thus,
we introduce a confidence level, the Uncertainty Ratio, to the
resource performance predictions, which is used by several
scheduling algorithms when making scheduling decisions (e.g.
MinMin, MaxMin). In ComplexcloudSim, we inject the Un-
certainty Ratio into all the processes which need to perform
performance prediction, according to the algorithm 4.

III. COMPLEXITY SIMULATION: COMPARISON OF FOUR
HEURISTICS CLOUD SCHEDULING ALGORITHMS

To showcase a possible application of Complexcloudsim,
we simulated the execution of a computationally intensive
workload (The Montage workflow) using four different heuris-
tic cloud scheduling algorithms and various degrees of com-
plexity in the Cloud resources. We expected the schedulers to
differ in their robustness in relation to complexity, and that this

Algorithm 4 Uncertainty Ratio for VM Performance Estima-
tion with Inaccurate Information in Scheduling

1: Require: Estimated VM performance, MIPSestimate
2: Require: Uncertainty Ratio, 0 ≤ RatioUncertainty ≤ 1
3: procedure PREDICTMIPS(MIPSestimate,RatioUncertainty )
4: if RatioUncertainty > 0 then
5: MIPSactual =MIPSestimate ∗ (1−Random ∈

[−RatioUncertainty, RatioUncertainty])
6: else MIPSactual =MIPSestimate

should be reflected in diverging workflow execution times. In
this section, we outline the experimental setup and evaluate the
impacts of resource complexity on Cloud scheduling systems.

A. Experiment Setup

Simulation of the scheduling system was done to examine
the robustness of the degradation created by resource complex-
ity. A Montage workflow was employed for this experiment,
which comes with CloudSim. This included 1,000 jobs con-
taining a group of random number sub-tasks. To maintain sim-
plicity, we employ a global variable, a degree of complexity,
which allows configuring the ratios of dynamicity, heterogene-
ity and uncertainty simultaneously. For each configuration, the
execution of Montage workflow was repeated 100 times on five
VMs, after which the statistical results were generated in terms
of workflow runtimes. During the course of the experiments,
the degree of complexity caused by ComplexCloudSim was
incrementally increased, and the impacts of complexity on
cloud scheduling systems QoS performance was measured.
To compare ComplexCloudSim with the original CloudSim, a
baseline simulation we conducted that ran without considering
complexity factors; this was also executed 100 times. As
expected, under four scheduling algorithms, we determined the
workflow runtime for the same workflow with zero variance
maintained in the original CloudSim, as presented in Table V.

TABLE V. BASELINE SIMULATION RESULT WITH ORIGINAL
CLOUDSIM

Scheduling Algorithms FCFS RR MinMin MaxMin

Average Runtime (Minutes) 2862 2865 2864 2862

Variance 0 0 0 0

Standard Deviation 0 0 0 0

B. Experiment Result

Here, the impacts on robustness were compared by em-
ploying different degrees of resource complexity and schedul-
ing algorithms. Figures 4 and 5 outlined above present the
experiment’s results. Figure 4 presents the average runtime
of the Montage work-flow between 3,220 and 3,505 minutes
for all experiments. This indicates degradation of runtime
by around 1323% compared with the performance baseline.
Apparently, ComplexCloudSim offers complexity factors that
have a considerable impact on the cloud scheduling system’s
QoS.

The average runtime degradation was also found not to
change directly in tandem with increased degree of complexity.
However, as observed in Figure 5, the degree of complexity
ranging from 20% to 120% was found to be proportional with

www.ijacsa.thesai.org 13 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

the increase in the standard deviation for workflow runtime.
It was clear that less reliable scheduling performances were
obtained due to increase in the standard deviation. Thus, the
complexity of the resources determines the reliability of the
cloud scheduling system.

Based on the experimental results, the complexity factor
had minimum impact on the MinMin scheduling algorithm in
terms of both average and standard deviation of the workflow
runtime. This suggests that more robust schedules are gener-
ated due to MinMin in a complex cloud environment. So when
compared with other three heuristics, the overall performance
of MinMin was found to be better, which was in line with the
earlier research.

Evidently, the effect of complex resources can be simulated
by ComplexCloudSim. This is a very desirable property as
cloud environments always keep facing complexity issues. We
expect this to be important going forward as other cloud
simulators did not sufficiently support it.

Fig. 4. Complexity Simulation: Average Workflow Runtime

Fig. 5. Complexity Simulation: Standard Deviation of Workflow Runtime

IV. DAMAGE SPREADING EVALUATION: CHAOTIC
BEHAVIOUR IN CLOUD SCHEDULING

The original development of the tool Damage Spreading
[17] was aimed at studying biologically motivated complex
systems. This tool has been commonly referred in the literature
for several research areas, including complex network models,
for observing systems complex behaviour. In complex systems,
the evolution of slightly different configurations of variables
can be investigated with this tool, provided they are subjected
to the same number sequence. Obtaining information regarding
whether or not a small perturbation (damage to the conditions)
introduced amongst variables can stay or spread at the same
level (even disappears) would assist us in examining a systems
robustness in relation to disturbance [16].

Here, ”initial damage” is the occurrence of a slight change
in the number of VMs Cvm and the degree of resource com-
plexity Ccomplexity to run the same workload. We introduced
small changes Cvm = 1 and Ccomplexity = 0.1 to a simulation
step-wisethe simulation that was executed 100 times with the
same workload. Then, we examined if the changes would
spread or not by taking into account two important QoS
determinants in the scheduling processes - the standard and
average deviation of workflow runtime.

To assess the damage spread, the damage was defined
as Dstd (difference in workflow runtime standard deviation
Rstd) and Daverage (difference in average workflow runtime
Raverage) present between two simulation results. As shown
through Formulas 1 and 2, these were then calculated, where
j ∈ [0.1, 0.2, 0.3, 0.4, 0.5] represents the degree of complexity
and i ∈ [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] represents the num-
ber of VMs.

Daverage(i, j) =

Raverage(i+ Cvm, j)−Raverage(i, j) (1)

Dstd(i, j) = Rstd(i, j + Ccomplexity) − Rstd(i, j) (2)

Figures 6 and 7 show the results of Daverage and Dstd

respectively.

As observed in Figure 6, for number of VMs i < 10 and
various degrees of complexity, the changes of Daverage are
relatively small. The damage does not spread in this region
and stays low at initial level.

As seen in Figure 7, the changes of Dstd for various
degrees of complexity, for number of VMs i < 9, become
highly unstable. However, the situation becomes considerably
better with an increase in the number of VMs, when i > 9.

Then, the relation between the spreading damage and
the number of increased VMs i is examined by employing
the standard deviation of Daverage and Dstd. The standard
deviation of Daverage(i) as σaverage(i), and the standard
deviation of Dstd(i) as σstd(i) are defined. Hence, the mean
values: Mean(σstd)) and Mean(σaverage) of all σaverage and
σstd are calculated, as presented in Tables VI and VII.

www.ijacsa.thesai.org 14 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

Fig. 6. Damage Spreading Evaluation: Daverage

Fig. 7. Damage Spreading Evaluation: : Dstd

Now, the state of the region is categorised loosely
by employing such mean values. We now assign region
σaverage(i) ≤ Mean(σaverage) or σstd ≤ Mean(σstd) as
”Stable Regions”. In this region, spreading and initial damages
maintain a stable correlation. Reliable improvements in QoS
occur with increased number of VMs, which signify smooth
and robust running of the scheduling system against degree
of complexity changes. We also categorise σaverage(i) >
Mean(σaverage) or σstd > Mean(σstd) as ”Chaotic Regions”
[18], as highlighted in Tables VI and VII by the red colour.
In this region, throughout the scheduling system, small dis-
turbances may spread, which result in significant changes in
performance due to the degree of complexity experienced. This
suggests that it is difficult to guarantee QoS to an increase in
the number of VMs.

Knowing when the scheduling system is in a chaotic region
or stable region helps in providing important guidelines to
quickly make decisions regarding achieving of a more robust
scheduling. For e.g. in a real world situation, we might run a
similar workload with more than 9 VMs based on the results
from simulation of ComplexCloudSim, but we could also avoid
choosing 11 or 12 VMs in a bid to satisfy the requirement of
QoS.

TABLE VI. RELATION BETWEEN NUMBER OF VMS AND Daverage

Daverage(i)

Degree of Complexity Mean(σaverage)=23

(i) VMs 0.1 0.2 0.3 0.4 0.5 σaverage(i)

5 456 489 481 514 469 22

6 320 322 344 363 377 25

7 258 271 237 282 248 18

8 193 174 196 178 231 23

9 148 168 180 169 171 12

10 124 117 122 149 94 19

11 198 101 108 64 135 50

12 -1 96 98 104 86 44

13 80 81 65 83 86 8

14 69 68 67 83 71 7

TABLE VII. RELATION BETWEEN NUMBER OF VMS AND Dstd

Dstd(i)

Degree of Complexity Mean(σstd)=24

(i) VMs 0.1 0.2 0.3 0.4 0.5 σstd(i)

5 58 69 94 73 80 49

6 48 37 79 63 61 38

7 42 43 39 71 48 31

8 78 23 60 34 40 30

9 46 9 41 44 32 21

10 32 23 39 20 34 18

11 42 25 31 24 26 18

12 41 26 26 28 24 17

13 19 32 15 26 22 13

14 0 37 15 24 20 11

14 21 18 22 11 22 11

V. CONCLUSION AND FUTURE WORK

This paper presents an extension to the CloudSim, which
is ComplexCloudSim, to analyse scheduling under a complex
cloud environment. The design of a resource complexity
module (dynamicity, heterogeneity, and uncertainty) is based
on implementation with the primary goal to offer a useful
tool for testing and validating the cloud scheduling algorithms
robustness. Section III presents the examination results of four
cloud scheduling algorithms to showcase the capability of
ComplexCloudSim to simulate different complexity factors for
the cloud scheduling system as well as replicate the short-
coming and known strengths of these algorithms. Then, based
on simulation in Section IV, we found two regions: Stable
Region, the region with converged small damage and Chaotic
Region, the region where damage spread, in the complex cloud
scheduling system.

We find Chaotic Behaviour in the cloud scheduling system
to be interesting because it signifies that the future schedules
in principle cannot be predicted. Such findings may explain
why in the real-world production environment, it is difficult to
put most of the scheduling algorithms in research, which rely
on prediction and the complexity exists everywhere. Even if
we know the precise processing time in advance, it does not
guarantee the precise completion time of tasks for complex
product systems such as the cloud. Therefore, if the scheduling
system decides to plan for a more robust production schedule,
it has to first predict if it is in Chaotic Region or Stable Region.
Then, suppose the system is under the Chaotic Region, it has

www.ijacsa.thesai.org 15 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 3, 2017

to look out for VMs with a suitable number to meet the QoS
requirement of the application.

Even through the ComplexCloudSim can model complexity
factors to an extent, still it cannot cover all the situations
occurring in the real-world cloud. However, the findings related
to chaotic behaviour in cloud scheduling system have inspired
new ideas to develop a more robust QoS-aware scheduling
algorithm. More detailed analysis is required in further work
to understand the cloud scheduling systems chaotic behaviour
as well as the damage spreading mechanisms. Such chaotic
behaviour needs to be studied for applying in real-world
applications. We deem our research work to be one of the
many steps towards multiple fruitful research topics.

REFERENCES

[1] Mell, Peter, and Tim Grance. ”The NIST definition of cloud computing.”
(2011): 20-23.

[2] Plestys, Rimantas, et al. ”The measurement of grid QoS parameters.”
Information Technology Interfaces, 2007. ITI 2007. 29th International
Conference on. IEEE, 2007.

[3] Braun, Tracy D., et al. ”A comparison of eleven static heuristics for
mapping a class of independent tasks onto heterogeneous distributed
computing systems.” Journal of Parallel and Distributed computing 61.6
(2001): 810-837.

[4] Gutierrez-Garcia, J. Octavio, and Kwang Mong Sim. ”A family of heuris-
tics for agent-based elastic cloud bag-of-tasks concurrent scheduling.”
Future Generation Computer Systems 29.7 (2013): 1682-1699.

[5] Bala, Anju, and Inderveer Chana. ”A survey of various workflow
scheduling algorithms in cloud environment.” 2nd National Conference
on Information and Communication Technology (NCICT). 2011.

[6] Iosup, Alexandru, Nezih Yigitbasi, and Dick Epema. ”On the perfor-
mance variability of production cloud services.” Cluster, Cloud and Grid
Computing (CCGrid), 2011 11th IEEE/ACM International Symposium
on. IEEE, 2011.

[7] Schad, Jrg, Jens Dittrich, and Jorge-Arnulfo Quian-Ruiz. ”Runtime
measurements in the cloud: observing, analyzing, and reducing variance.”
Proceedings of the VLDB Endowment 3.1-2 (2010): 460-471.

[8] Herroelen, Willy, and Roel Leus. ”Project scheduling under uncertainty:
Survey and research potentials.” European journal of operational research
165.2 (2005): 289-306.

[9] Calheiros, Rodrigo N., et al. ”CloudSim: a toolkit for modeling and
simulation of cloud computing environments and evaluation of resource
provisioning algorithms.” Software: Practice and Experience 41.1 (2011):
23-50.

[10] Chen, Huankai, et al. ”Complexity Reduction: Local Activity Rank-
ing By Resource Entropy For QoS-aware Cloud Scheduling.” Services
Computing (SCC), 2016 IEEE International Conference on. IEEE, 2016.

[11] Chen, Huankai, and Frank Z. Wang. ”Spark on entropy: A reliable &
efficient scheduler for low-latency parallel jobs in heterogeneous cloud.”
Local Computer Networks Conference Workshops (LCN Workshops),
2015 IEEE 40th. IEEE, 2015.

[12] Chen, Weiwei, and Ewa Deelman. ”Workflowsim: A toolkit for sim-
ulating scientific workflows in distributed environments.” E-Science (e-
Science), 2012 IEEE 8th International Conference on. IEEE, 2012.

[13] Garg, Saurabh Kumar, and Rajkumar Buyya. ”Networkcloudsim: Mod-
elling parallel applications in cloud simulations.” Utility and Cloud
Computing (UCC), 2011 Fourth IEEE International Conference on.
IEEE, 2011.

[14] Bux, Marc, and Ulf Leser. ”Dynamiccloudsim: Simulating heterogene-
ity in computational clouds.” Future Generation Computer Systems 46
(2015): 85-99.

[15] Chen, Huankai, Frank Wang, and Na Helian. ”A Cost-Efficient and
Reliable Resource Allocation Model Based on Cellular Automaton
Entropy for Cloud Project Scheduling.” system 4.4 (2013).

[16] Ikeda, Hinata. ”Chaotic behavior in complex shop scheduling.” Soft
Computing and Intelligent Systems (SCIS) and 13th International Sym-
posium on Advanced Intelligent Systems (ISIS), 2012 Joint 6th Interna-
tional Conference on. IEEE, 2012.

[17] Kauffman, Stuart A. ”Metabolic stability and epigenesis in randomly
constructed genetic nets.” Journal of theoretical biology 22.3 (1969):
437-467.

[18] Boccaletti, Stefano, et al. ”The control of chaos: theory and applica-
tions.” Physics reports 329.3 (2000): 103-197.

www.ijacsa.thesai.org 16 | P a g e


